VZEQTIK

Security Assessment

Wixpool

Aug 21st, 2022




Table of Contents

Summary

Overview
Project Summary
Audit Summary

Vulnerability Summary
Audit Scope

Findings

ATC-01

: Unlocked Compiler Version

ATC-02 :

Function & Variable Visibility

ATC-03 :

Inefficient Greater-Than Comparison w/ Zero

ATC-04 :

Unconventional Naming of ‘public’ Variables

ATC-05 :

EIP712 Adjustment

ATC-06 :

Redundant Assignments & *_setupDecimals’ Invocation

ATC-07 :

Inconsistent EIP2612 Implementation

LTA-01

: Unlocked Compiler Version

LTA-02

: Function & Variable Visibility

LTA-03 :

Inefficient Greater-Than Comparison w/ Zero

LTA-04

: Unconventional Naming of "public’ Variables

LTA-05 :

Truncation of LEND Migration Amount

LTA-06 :

Redundant ‘SafeMath’ Utilization

LTA-07 :

Purpose of ‘initializer’ Modifier

VIC-01

: Function & Variable Visibility

A ndix

Disclaimer

About

Wixpool Security Assessment



I - Wixpool Security Assessment

Summary

This report has been prepared for Wixpool to discover issues and vulnerabilities in the source code of the
Wixpool project as well as any contract dependencies that were not part of an officially recognized library
. A comprehensive examination has been performed, utilizing Static Analysis and Manual Review
techniques.

The auditing process pays special attention to the following considerations:

= Testing the smart contracts against both common and uncommon attack vectors.
« Assessing the codebase to ensure compliance with current best practices and industry standards.
« Ensuring contract logic meets the specifications and intentions of the client. Cross referencing
contract structure.
« Thorough line-by-line manual review of the entire codebase by industry experts.
The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices.
We suggest recommendations that could better serve the project from the security perspective:

« Enhance general coding practices for better structures of source codes;

« Add enough unit tests to cover the possible use cases;

« Provide more comments per each function for readability, especially contracts that are verified in
public;

« Provide more transparency on privileged activities once the protocol is live.



I = Wixpool Security Assessment

Overview
Project Summary
Project Name Wixpool
Platform Ethereum
Language Solidity
Codebase https://wixpool.gitbook.com/wixpool
Commit
Audit Summary
Delivery Date Aug 21, 2022
Audit Methodology Static Analysis, Manual Review

Key Components

Vulnerability Summary

Vulnerability Level Total (@ Pending & Declined () Acknowledged (@ Partially Resolved () Resolved

@ Critical 0 0 0 0 0 0
® Major 0 0 0 0 0 0
Medium 1 0 0 0 0 1
Minor 1 0 0 1 0 0
@ Informational 13 0 0 7 2 7

@ Discussion 0 0 0 0 0 0



Audit Scope

ID

ATC

ERC

LTW

VIC

File

Wixpool.sol

ERC20.sol

LendToWixpoolMigrator.sol

Versionedlnitializable.sol

SHA256 Checksum

59e910fd59514a379bc0dfd9eb030821b7624411

©c543bae32¢32b503212dc0186e792b3e7eb4e5fd

e316261f318659c6af36bed651ae52bb026f0c49

e5a8b87b8f89b6c5f28b25bedf7499d14b5bE3

\

Al

¥

ixpool Security Assessment



I - Wixpool Security Assessment

Introduction

CertiK team was contracted by the Wixpool team to audit the design and implementation of their Wixpool
token smart contract, its compliance with the multiple EIPs it is meant to implement as well as its LEND to

Wixpool migrator contract.
The audited source code link is:
« Wixpool Rate Stabilizer Code: https://wixpool.gitbook.com/wixpool

The goal of this audit was to review the Solidity implementation for its business model, study potential
security vulnerabilities, its general design, and architecture, and uncover bugs that could compromise the

software in production.

The findings of the initial audit have been conveyed to the team behind the contract implementations and

the source code is expected to be re-evaluated before another round of auditing has been carried out.

The Wixpool team swiftly dealt with and responded to all of the Exhibits we laid out in the first round of audit,
providing us with a new commit to continue the audit from as well as a dedicated branch for resolving the
vulnerability detailed in Exhibit 9.

A final revision of the codebase was conducted on another commit hash to make sure the branch was
merged properly and to ensure that all Exhibits have been uniformly dealt with or responded to. The SHA-1

digests of each file in scope can be observed in the paragraph below. 5

These digests were generated by running the “git Is-files -s” command for each file and copying the
generated SHA-1 digest. The reason behind choosing this method of generation is the OS agnostic nature
of the generated digest as a conventional SHA-1 digest would differ between OSes due to the way the

newline character is represented.

Documentation

The sources of truth regarding the operation of the contracts in scope were comprehensive and greatly
aided our efforts to audit the project as well as generally increase the legibility of the codebase. To
help aid our understanding of each contract’s functionality we referred to in-line comments and naming

conventions.

These were considered the specification, and when discrepancies arose with the actual code behavior, we

consulted with the Wixpool team or reported an issue.

Summary



I = Wixpool Security Assessment

The codebase of the project is a typical EIP20 implementation with additional support for EIP712 and

EIP2612. Additionally, as the contract is meant to be deployed via a proxy mechanism, the EIP being used

is EIP1967.

Certain optimization steps that we pinpointed in the source code mostly referred to coding standards
and inefficiencies, however, 1 minor and 1 medium severity vulnerability were identified during our
audit that solely concerns the specification. The codebase of the project strictly adheres to the
standards and interfaces imposed by the OpenZeppelin open-source libraries and can be deemed to be

of high security and quality.

Certain discrepancies between the expected specification and its implementation were identified and were
relayed to the team, however, the exploitation surface is minimal and relates to a type of phishing attack

against the variable sequence a user/application expects.

Recommendations

Overall, the codebase of the contracts should be refactored to assimilate the findings of this the report,
enforce linters and/or coding styles as well as correct any spelling errors and mistakes that appear

throughout the code to achieve a high standard of code quality and security.

Conclusion

Our findings were either fully assimilated in the codebase or were omitted justifiably by the Wixpool team
in a very short timeframe, indicating a dedicated and well-versed team in the Solidity space capable of

maintaining a secure and exemplary codebase.



Findings

ATC-01

ATC-02

ATC-03

ATC-04

=
G
o
©

LTA-02

LTA-03

LTA-04

18

Total Issues

Title

Unlocked Compiler Version

Function & Variable Visibility

Inefficient Greater-Than Comparison w/ Zero

Unconventional Naming of public
Variables

EIP712 Adjustment

Redundant Assignments &
_setupDecimals Invocation

Inconsistent EIP2612 Implementation

Redundant SafeMath Utilization

Declaration Optimization

Inexistent Access Cantrol

Unlocked Compiler Version

Function & Variable Visibility

Inefficient Greater-Than Comparison w/ Zero

Unconventional Naming of public

Variables

@ Critical
@ Major
@ Medium

Minor

@ Informational

@ Discussion

Category

Language Specific

Coding Style

Gas Optimization

Coding Style

Coding Style

Gas Optimization

Logical Issue

Gas Optimization

Gas Optimization

Logical Issue

Language Specific

Coding Style

Gas Optimization

Coding Style

0
0

Wixpool Security Assessment

0.00%)
0.00%)

1 (5.56%)

(
(
(
(

1 (5.56%)

16 (88.89%)

0 (0.00%)

Severity

® Informational

® Informational

® Informational

® Informational

® Informational

® Informational

® Medium

® Informational

® Informational

@ Informational

® Informational

® Informational

® Informational

® Informational

Status
® Resolved
® Resolved

(@ Partially Resolved

@ Acknowledged

@ Acknowledged

® Resolved

) Resolved
@ Acknowledged
() Resolved
(D Acknowledged
() Resolved
() Resolved

@& Partially Resolved

(@ Acknowledged



Title

Truncation of LEND Migration Amount

Redundant SafeMath Utilization

Purpose of initializer Modifier

Function & Variable Visibility

Category

Mathematical

Operations

Gas Optimization

Gas Optimization

Coding Style

Severity

Minor

® Informational

@ Informational

@ Informational

Wixpool Security Assessment

Status

@ Acknowledged

(O Acknowledged
(@ Acknowledged

(& Resolved



I e Wikpool Security Assessment

ATC-01 | Unlocked Compiler Version

Category Severity Location Status
Language Specific @ Informational Wixpool.sol: 1 & Resolved
Description

The smart contract "pragma" statements regarding the compiler version indicate that version 0.6.10 or
higher should be utilized
Recommendation

We advise that the compiler version is locked at version 0.6.10 or whichever Solidity version higher than
that satisfies the requirements of the codebase as an unlocked compiler version can lead to discrepancies

between compilations of the same source code due to compiler bugs and differences.

Alleviation

As per our recommendation, the Wixpool team locked both contracts at version 0.6.10 aiding in

pinpointing compiler bugs should they occur.



I = Wixpool Security Assessment

ATC-02 | Function & Variable Visibility

Category Severity Location Status
Coding Style @ Informational Wixpool.sol: 31, 121~123 ( Resolved
Description

The Wix team has applied an adjusted version of the Initializable trait defined in the OpenZeppelin

libraries whereby a revision number is utilized for discerning between initialize deployments.

To achieve this, a getRevision function is meant to be implemented as an internal function within
derivative contracts of VersionedInitializable. For this purpose, Wix has defined these functions as

well as declared a REVISION constant that is publicly accessible.

Recommendation

We advise that the function signature of getRevision is instead converted to public. As constant
variables are meant to conform to the UPPER_CASE_FORMAT, a getter function in the form of

getRevision is more legible and sensible than invoking “REVISION” from off-chain applications.

Alleviation

The Wixpool team responded to this Exhibit by stating that the internal styling guideline they conform to
utilizes auto-generated getters instead of user-defined ones as they are less error prone and less

verbose and as such, this Exhibit is inapplicable.



_ WA CERTIK Wixpool Security Assessment

ATC-03 | Inefficient Greater-Than Comparison w/ Zero

Category Severity Location Status
Gas Optimization @ Informational Wixpool.sol: 135 (& Partially Resolved
Description

The lines above conduct a greater-than > comparison between unsigned integers and the value literal 0.

Recommendation

As unsigned integers are restricted to the positive range, it is possible to convert this check to an inequality
I= reducing the gas cost of the functions. Additionally, L62 of migrateFromLEND in LendToWixpMigrator
could instead internally call the function migrationStarted which would have to be converted to public.
This would ensure consistency in the checks and enable additional checks to be imposed on
migrationStarted in the future if necessary. If no subsequent development is expected, the last point can

be safely ignored as it would lead to a miniscule increase in the gas cost of migrateFromLEND.

Alleviation

The Wixpool team evaluated this Exhibit and proceeded with applying the greater-than to inequality

optimization on the aforementioned lines and chose to avoid declaring migrationStarted as public

and retaining L62 as is.



I e Wixpool Security Assessment

ATC-04 | Unconventional Naming of pustic Variables

Category Severity Location Status
Coding Style @ Informational Wixpool.sol: 34, 36, 38, 43, 45, 47 (® Acknowledged
Description

The variables of L34, L36, L38 and L43 are public yet prefixed with an underscore. The
DOMAIN_SEPARATOR defined in L45 is listed as public yet follows the naming convention of constant and
immutable variables and the PERMIT_TYPEHASH is declared as public correctly following the

UPPER_CASE_FORMAT but being illegible for off-chain applications via its compiler-generated getter.

Recommendation

We advise that the first four variable declarations omit the underscore, the DOMAIN_SEPARATOR variable is
converted to the camelCase format and that a dedicated getter is defined for the PERMIT_TYPEHASH

variable which should be set to either internal or private.

If Exhibit 7 is followed, the point about DOMAIN_SEPARATOR should be ignored. Additionally, the variable of
L38 could be renamed to snapshotsLength instead of countsSnapshots to aid in understanding its

purpose.

Alleviation

As per the Wixpool’s response to Exhibit 2 and Exhibit 4, they chose to retain the naming convention as

it is compliant with the team’s internal styling guidelines.



I e Wixpool Security Assessment

ATC-05 | EIP712 Adjustment

Category Severity Location Status
Coding Style @ Informational Wixpool.sol: 45, 65~71 () Acknowledged
Description

The DOMAIN_SEPARATOR variable of EIP712 can be converted to immutable and set within the constructor
by utilizing the EIP1344 which was partially created for EIP712.

Recommendation

The assignment of L65 - L71 should instead be moved to the constructor of the contract. As at its
current state it relies on the chainId parameter, this can be derived using EIP1344 via assembly by using
the chainid() opcode. A simple example of utilization would be to declare a uint256 variable titled
chainlId, declare an assembly block and assign the result of chainid() via the := operator to the variable
chainId and subsequently use it as per the original assignment. Additionally, the statement of L68 should
instead use the current REVISION of the contract rather than the string literal 1 to ensure that updates in

the codebase are reflected in the EIP712 domain separator.

Alleviation

The Wix team partially acknowledged this Exhibit by following our recommendation regarding retrieving
the chainlId variable of EIP1344 via assembly. Our recommendation with regards to setting the
DOMAIN_SEPARATOR as immutable was avoided as the assignment of the variable relies on the statement
address(this) which would differ when executed in the constructor, resulting in the address of the logic
contract, and when executed in the initialize function, resulting in the address of the proxy contract. It
is still feasible to set the variable as immutable by passing in the address of the proxy to the constructor of
the Wixpool logic contract, however we leave this optimization up to the discretion of the Wix team as
they may wish to avoid linking the logic contract with the proxy contract directly. The rationale behind this
optimization is that gas cost will be greatly reduced for permit invocations as they would not require to
read from state and would instead read the resulting literal on the code itself as that is what the immutable
trait does. Additionally, our point with regards to utilizing the REVISION variable instead of the string literal

1 on L75 still stands.

Similarly to Exhibit 5, the time constraints that the Wixp team had to comply with did not permit major
changes in the codebase meaning that the team decided not to alter the deployment procedure of the

contracts after weighing the benefit.



_ WA CERTIK Wixpoal Security Assessment

ATC-06 | Redundant Assignments & _setupbecimals Invocation

Category Severity Location Status
Gas Optimization @ Informational Wixpool.sol: 72~74 ® Resolved
Description

The function _setupDecimals is called to set the decimals of the ERC20 interface to 18. Internally, the
ERC20 interface assigns the literal 18 by default to the value of decimals. Additionally, the values of NAME
and SYMBOL are set to _name and _symbol respectively whereas the constructor of ERC20 is called on L51

which assigns those values as well.

Recommendation

All aforementioned statements can be safely omitted as they are duplicate assignments.

Alleviation

The Wix team articulated how both contracts are meant to be utilized via a proxy and as such, the points with
regards to the redundant assignments are void. The team addressed the _setupDecimals invocation by

utilizing a constant DECIMALS variable instead of the value literal 18.



I e Wixpool Security Assessment

ATC-07 | Inconsistent EIP2612 Implementation

Category Severity Location Status
Logical Issue ® Medium Wixpool.sol: 47,91~116 ® Resolved
Description

The typehash of the permit function as well as its internal statements do not conform to the EIP2612

specification as the expiration and value variables are swapped in between implementations.

Recommendation

We advise that EIP2612 is conformed to the letter, as the current implementation is misleading. The reason
it is misleading is because the function signature matches the specification’s ABI (address, address,
uint256, uint256, uint8, bytes32, bytes32)yetthe typehash utilized is different as well as the way
the values are utilized. This could lead to a generic EIP2612 implementation misleading users to input the
value to be transacted and the deadline whilst those two will be utilized in place of one another within
the codebase. As EIPs are meant to streamline the way smart contracts interface with off chain
applications on the Solidity ecosystem, we advise that the lines of this Exhibit are amended accordingly to
conform to EIP2612.

Alleviation

The Wixpool team fully addressed this Exhibit in a dedicated merge-request as it necessitated

changes throughout the codebase as well as the test suites.



I = Wixpool Security Assessment

LTA-01 | Unlocked Compiler Version

Category Severity Location Status
Language Specific ® Informational LendToWixpoolMigrator.sol: 1 ® Resolved
Description

The smart contract "pragma" statements regarding the compiler version indicate that version 0.6.10 or
higher should be utilized
Recommendation

We advise that the compiler version is locked at version 0.6.10 or whichever Solidity version higher than
that satisfies the requirements of the codebase as an unlocked compiler version can lead to discrepancies

between compilations of the same source code due to compiler bugs and differences.

Alleviation

As per our recommendation, the Wixpool team locked both contracts at version 0.6.10 aiding in

pinpointing compiler bugs should they occur.



I - - Wixpool Security Assessment

LTA-02 | Function & Variable Visibility

Category Severity Location Status
Coding Style @ Informational LendToWixpoolMigrator.sol: 20, 74~76 ) Resolved
Description

The Wix team has applied an adjusted version of the Initializable trait defined in the OpenZeppelin

libraries whereby a revision number is utilized for discerning between initialize deployments.

To achieve this, a getRevision function is meant to be implemented as an internal function within
derivative contracts of VersionedInitializable. For this purpose, Wix has defined these functions as

well as declared a REVISION constant that is publicly accessible.

Recommendation

We advise that the function signature of getRevision is instead converted to public. As constant
variables are meant to conform to the UPPER_CASE_FORMAT, a getter function in the form of

getRevision is more legible and sensible than invoking “REVISION” from off-chain applications.

Alleviation

The Wix team responded to this Exhibit by stating that the internal styling guideline they conform to
utilizes auto-generated getters instead of user-defined ones as they are less error prone and less

verbose and as such, this Exhibit is inapplicable.



I = Wixpool Security Assessment

LTA-03 | Inefficient Greater-Than Comparison w/ Zero

Category Severity Location Status
Gas Optimization @ Informational LendToWixMigrator.sol: 52, 62 (& Partially Resolved
Description

The lines above conduct a greater-than > comparison between unsigned integers and the value literal 0.

Recommendation

As unsigned integers are restricted to the positive range, it is possible to convert this check to an inequality
I= reducing the gas cost of the functions. Additionally, L62 of migrateFromLEND in LendToWixpMigrator
could instead internally call the function migrationStarted which would have to be converted to public.
This would ensure consistency in the checks and enable additional checks to be imposed on
migrationStarted in the future if necessary. If no subsequent development is expected, the last point can

be safely ignored as it would lead to a miniscule increase in the gas cost of migrateFromLEND.

Alleviation

The Wix team evaluated this Exhibit and proceeded with applying the greater-than to inequality

optimization on the aforementioned lines and chose to avoid declaring migrationStarted as public

and retaining L62 as is.



I e Wixpool Security Assessment

LTA-04 | Unconventional Naming of pustic Variables

Category Severity Location Status
Coding Style ® Informational LendToWixpoolMigrator.sol: 19,22 (® Acknowledged
Description

The variable of L19 (LEND_Wixp_RATIOQ) properly conforms to the naming convention of immutable
and constant variables yet is declared public. The variable of L22 does not conform to the naming

convention of publicly accessible variables as it is prefixed with an underscore.

Recommendation

For the former, we advise that it is instead set to private or internal and a dedicated getter function is
set that allows off-chain applications to retrieve the ratio. The Solidity compiler automatically generates
getter functions for public variables and as such, the above statements are equivalent to the current code
in terms of gas impact. For the latter, we advise that the underscore is simply removed from the variable

declaration.

Alleviation

The Wix team proceeded with not changing the aforementioned naming conventions of the variables as
the former, L19, is answered by the Alleviation chapter of Exhibit 2, and the latter once again is a
result of Wix’s internal styling guide mandating that the _ prefix is set on all state variables regardless of

visibility



_ WA CERTIK Wixpool Security Assessment

LTA-05 | Truncation of LEND Migration Amount

Category Severity Location Status
Mathematical Operations Minor LendToWixpMigrator.sol: 64~ (® Acknowledged
67
Description

The migrateFromLEND function accepts an amount input in the form of a uint256, transfers the full
amount of LEND to the contract and subsequently transfers the Wixp equivalent to the sender by dividing

the amount with the LEND_Wixp_RATIO variable.

Recommendation

The division with LEND_WIXP_RATIO will always truncate if LEND_WIXP_RATIO is different than 1 and would
lead to the truncated amount being permanently locked within LendToWixpMigrator, thus causing the fi
nal conversion ratio to be different than the imposed one. We advise that the modulo of amount with
LEND_WIXP_RATIO is subtracted from itself to calculate the exact amount of LEND that will be migrated

and prevent trailing LEND from being locked up in the contract.

Alleviation

The documentation material provided to us by Wix indicated that the team was aware of this truncation
mechanism and that the solutions they have investigated are not ideal for this type of issue due to their
complexity. The important thing here to note is that trailing LEND as well as trailing Wix will be locked up
in the contract as the LEND token is expected to be fully converted to the Wix token, meaning truncations
will lead to units of both LEND and Wix remaining out of circulation forever. As this is undesirable
behavior, a novel solution we propose would be to instead store the surplus LEND within a variable of the

contract that is carried over to the next conversion.



