
Wixpool Rate Stabilizer Code Review

10/11/2022

Audited by – AHR (OF-10) The_Swarm

GROUP

VERSION 1: VERSION 2:
17/01/2023

shittymeat

shittymeat

Executive Summary

 The purpose of this report

Smart Contract Code Review
This document aims to record the vulnerabilities found from a code review conducted by

Blueswarm. The detected vulnerabilities are plotted against Best Practice Guidelines laid down

by the community.

The Objective

Blueswarm to perform an industry best practice Vulnerability Assessment and Code Review and

reports the findings from the following smart contracts only:

Execution Strategy

Our execution strategy incorporates proven methodologies, extremely qualified personnel, and a
highly responsive approach to managing deliverables and the utilization of proprietary software.

Methodology

The code audit was carried out using the specification of SWC (Smart Contract Weakness
Classification) and CWE (Common Weakness Enumeration). The assessment was conducted using a
combination of proprietary software and manual testing by highly skilled individuals.

WRS Algorithm, Wixpool Gate Defence

Vulnerability Overview

 Timeline and Audit Log

The Security Code Audit for the WRS Algorithm of Wixpool project lasted 23 days from the 17th Sep

2022 to 10th Oct June 2022. Where in total, 2 contracts: WRS Algorithm, Wixpool Gate Defence

 Vulnerabilities Detected

A total of 10 vulnerabilities were discovered and identified in the contracts.
The following and below mentioned charts show the respective severity classifications used, the
breakdown and distribution of vulnerabilities.

Fig 2. Vulnerability Breakdown

in Numbers

HIGH RISK – No problems of high severity were found

MEDIUM RISK - A total of 2 classified as medium risk vulnerabilities detected

Contract Files Affected – Wixpool Gate Defence

WRS Algorithm and Wixpool Gate Defence are working properly

No threat to user assets

Fig 3. Vulnerability Distribution in %

Exploit Effort & Resource Classification

Rating

Definition of Risk Rating

Definition of Resource
Requirement to Exploit

Definition of Effort to
Exploit

HIGH

Deficiency creates a
vulnerability that could result
in loss of system control or
override a desired function or
give access to critical or
sensitive information.

Recommendation either
requires the purchase of
hardware or, requires
significant research and
resources to exploit

To exploit the weakness
requires a high level of
expertise and advanced
knowledge of smart
contract design, and
programming

MEDIUM

Deficiency creates an
exposure to a larger, but
limited loss of confidentiality
or integrity, as the result of
many user accounts being
compromised, or restricted
functions being accessed.

Recommendation may require
the purchase of hardware or
software and/or requires
moderate, research and
implementation activities to
exploit

Requires medium level of
effort. No tools are
available but sample code
or other similar exploits
are known

LOW

Deficiency creates limited
exposure to the compromise
of user accounts or
unauthorized access to data

Recommendation may require
the purchase of minor
hardware or software and/or
requires minor research and
implementation activities to
exploit

Easy to exploit with known
methods or tools with
minimal modifications

LOW RISK - A total of 5 classified as low risk vulnerabilities detected Contract

Files Affected: WRS Algorithm, Wixpool Gate Defence

 Exploit Efforts & Resource Analysis

The following graphs below provide insight into the exploit efforts and resources needed in order to

successfully complete or carry out exploitation mapped against the 10 vulnerabilities detected

 Exploit Effort

Of the 10 Security issues currently identified, all vulnerabilities would require a low level of
to exploit

 Fig 4. Exploit Effort Breakdown in % Fig 5. Exploit Effort Breakdown in numbers

 Exploit Resource Requirements

Of the 10 Security issues identified, all vulnerabilities that can be exploited require less resources to
exploit.

 Fig 6. Resources need to exploit in % Fig 7. Resources needed to exploit in numbers

Remediation Resource Requirements

Rating

Definition of Risk Rating

Definition of Resource
Requirement to Remediate

Definition of Effort to
Remediate

HIGH

Deficiency creates a
vulnerability that could result
in loss of system control or
override a desired function or
give access to critical or
sensitive information.

Recommendation either
requires the purchase of
hardware or, requires
significant changes to the
code base or research and
resources to remediate

To remediate the
vulnerabilities requires a
high level of expertise and
advanced knowledge of
smart contract design, and
programming

MEDIUM

Deficiency creates an
exposure to a larger, but
limited loss of confidentiality
or integrity, as the result of
many user accounts being
compromised, or restricted
functions being accessed.

Recommendation may require
the purchase of hardware or
software and/or requires
moderate changes to the
codebase and/or research and
implementation activities to
remediate the vulnerability

Requires medium level of
effort and changes to
remediate.

LOW

Deficiency creates limited
exposure to the compromise
of user accounts or
unauthorized access to data

Recommendation may require
the purchase of minor
hardware or software and/or
requires minor changes in the
codebase to remediate
against the vulnerability

Easy to remediate with
minimal modification or
effort

 Remediation Resource Requirements

Of the 10 Security issues identified, remediation efforts and resources required in all circumstances
are considered Low. Therefore, minimal resources and programming efforts are required to
implement satisfactory remediation.

 Fig 8. Resources need to remediate in % Fig 9. Resources needed to remediate in numbers

Severity

MEDIUM Contract Name/s

Category: . Violation of Check-Effects List of Contracts Affected

Description

State Variables updated after External Calls . Violation of Check-Effects Interaction Pattern.

The Wixpool Gate Defence contract includes the swap function that updates some of the

very imperative state variables of the contract after the external calls are being made. An

external call within a function technically shifts the control flow of the contract to another

contract for a particular period of time. Therefore, as per the Solidity Guidelines, any

modification of the state variables in the base contract must be performed before

executing the external call. Although the function has been assigned the nonReentrant

modifier, the approach used, in this function, for making an external call violates the

Check Effects Interaction Pattern.

The following functions in the contract updates the state

variables after making an external call at the lines mentioned below: ● swap() function at

Line 331, 346 and 348

Code Reference/s

Line

331, 346 and 348

Remediation

Modification of any State Variables must be performed before making an external call. Check

Effects Interaction Pattern must be followed while implementing external calls in a function

Wixpool Gate Defence

Severity

MEDIUM Contract Name/s

Category: Violation of Check_Effects List of Contracts Affected

Interaction Pattern found in the contract

Description

As per the Check_Effects_Interaction Pattern in Solidity, external calls should be made at the very

end of the function and event emission, as well as any state variable modification, must be done

before the external call is made. The following functions, however, violate the Check-Effects

Interaction pattern:

Code Reference/s

_burnLock at Line 363-365 ● mint() at Line 317-320

Remediation

Check Effects Interaction Pattern must be followed while implementing external calls in a

function.

Wixpool Gate Defence

Severity

LOW Contract Name/s

Category: State Variable initialized but. List of Contracts Affected

never used in the contract

Description

Explanation: The Crowdsale contract includes a state variable defRef, with an internal visibility, that

is being initialized but never used throughout the gas. Recommendation: State variables should

either be used effectively in the contract or removed to reduce gas usage.

Code Reference/s

Line no - 56

adress internal defRef

Remediation

State variables should either be used effectively in the contract or removed to reduce gas

usage.

Wixpool Gate Defence
WRS Algorithm

Severity

LOW Contract Name/s

Category: presaleBulkLoad function List of Contracts Affected

includes a Hardcoded date

Description

Keeping in mind the immutable nature of smart contracts, it is not considered a better practise to

hardcode any address or imperative uint in the contract before deployment.

Code Reference/s

Line: 333

Remediation

It is recommended to use a state variable for storing such an integer and initialize them in the

constructor.

Wixpool Gate Defence
WRS Algorithm

Severity

LOW Contract Name/s

Category: Boolean Constant is being List of Contracts Affected

inadequately used in the buyWithETH function

Description

During the automated testing of the crowdsale contract, it was found that the buyWithEth function

includes a require statement that doesn’t implement proper usage of boolean constant.

Code Reference/s

Line: - 596-599

Automated Test Result

Remediation

It is recommended to modify the require statement and implement the boolean constant usage

correctly.

WRS Algorithm

Severity

LOW Contract Name/s

Category: too many digits used List of Contracts Affected

Wixpool Gate Defence

Description

The mentioned lines have a large number of digits that makes it difficult to review and

reduce the readability of the code. The following State Variables/Functions of respective

contracts mentioned below include large digits:

Code Reference/s

a. Wixpool Gate Defence ● CROWDSALE_LIMIT at Line 22

b. Wixpool Gate Defence

quorumVotes() 21-23

proposalThreshold() 26-28

Remediation

Ether Suffix could be used to symbolize the 10^18 zeros

Severity

LOW Contract Name/s

Category: External Visibility should be preferred List of Contracts ffected

Description

Those functions that are never called throughout the contract should be marked as external

visibility instead of public visibility. This will effectively result in Gas Optimization as well.

Therefore, the following functions of respective contracts mentioned below should must be

marked as external within the contract:

Code Reference/s

WRS ● updateParams ● stopCrowdSale ● setPoolsize ● fetchCoin ● setStatusByID ●

setRateByID ● coinCounter() ● coin() coinRate() ● coinData() ● presaleBulkLoad ● buy()

 ●Wixpool Gate Defence getPoolDataList() ● getReservesByPool() ●

getReserves()

●

getExpectedReturn() ● removeLiquidity() ● removeLiquidityETH()

 WRS ● propose ● queue () ● execute () ● cancel () ● getReceipt () ● castVote () ●

castVoteBySig() ● __acceptAdmin() ● __abdicate() ● __queueSetTimelockPendingAdmin() ● _

_executeSetTimelockPendingAdmin()

Remediation

If the PUBLIC visibility of the above-mentioned functions is not intended, then the EXTERNAL

Visibility keyword should be preferred.

Wixpool Gate Defence
WRS Algorithm

Severity

INFORMATIONAL Contract Name/s

Category: Coding Style Issues in the contract List of Contracts affected

Description

Code readability of a Smart Contract is largely influenced by the Coding Style issues and in

some specific scenarios may lead to bugs in the future. During the automated testing, it

was found that the following contracts have quite a few code style issues:

a. CrowdSale

b. Wixpool Gate Defence

Remediation

Therefore, it is highly recommended to fix the issues like naming convention, indentation, and code

layout issues in a smart contract

Wixpool Gate Defence
WRS Algorithm

Open Cases

Issues Open Issues Closed Issues

Critical Severity 3 0

Medium Severity 4

Low Severity

Information 1 0

Total Found
16

END OF FIRST REPORT

3

5

1

The contract has gone through several stages of the audit procedure that includes structural analysis,
automated testing, manual code review etc. All the issues have been explained and discussed in detail above.
Along with the explanation of the issue found during the audit, the recommended way to overcome the issue or
improve the code quality has also been mentioned. Out of the vulnerabilities found, all have been closed or
either the contract is question has been deprecated or future fixes will be modified in upgrades.

Conclusion

1 9

The contract has gone through several stages of the audit procedure that includes structural analysis,
automated testing, manual code review etc. All the issues have been explained and discussed in detail above.
Along with the explanation of the issue found during the audit, the recommended way to overcome the issue or
improve the code quality has also been mentioned. Out of the vulnerabilities found, all vulnerabilities and issues
identified were either corrected or had been adequately addressed through other controls.
either the contract in question have been deprecated or future low effect fixes will be modified in future upgrades.

2

shittymeat

DISCLAIMER [CLIENT: WIXPOOL

V1: Original Report without remediation [ORIGINALTESTDATE]: 10/11/2022

V2: Remediation Report [REMEDIATIONTESTDATE]: 17/01/2023

This review is marked as V.2, which was conducted by Blueswarm’s certified security engineers. We

identified several security vulnerabilities and provided remediation advice to Wixpool

 After being notified by [CLIENT] that all vulnerabilities have been corrected, Blueswarm have

performed a remediation test (V.2) on [REMEDIATIONTESTDATE] to confirm that all vulnerabilities and

 issues identified were either corrected or had been adequately addressed through other controls. While

no application or system can be 100% secure, all of our security findings were corrected or addressed

and it is our opinion that the contracts tested are reasonably well written from

a

security

perspective

 and the applications and supporting systems are deployed, configured and

implemented in

a

secure

manner. IF NOT FULLY CORRECTED The review was conducted by Blueswarms’s certified security

engineers. We identified several security vulnerabilities and provided remediation

advice

to

[CLIENT].

After being notified by [CLIENT] that these selected vulnerabilities had

been

corrected, Blueswarm

performed a remediation test on

[REMEDIATIONTESTDATE] and confirmed that these selected vulnerabilities were either corrected or

had been adequately addressed through other controls. There were findings identified by Blueswarm

 that were not validated as corrected. Please contact [CLIENT] for further information regarding

these

 findings and their resolution status. DISCLAIMER: Blueswarm conducted this testing on

the

smart

contracts that existed as of [ORIGINALTESTDATE]. Information security threats are continually

changing,

 with new vulnerabilities discovered on a daily basis, and no application can ever be

100%

secure

no

matter how much security testing is conducted. This report is intended only to

provide

documentation

that [CLIENT] has corrected all findings noted by Blueswarm as of [REMEDIATIONTESTDATE].

This

report cannot and does not protect against personal or business loss as

the

result of use of

the

 applications or systems described. Blueswarm offers no warranties, representations or

legal

 certifications concerning the applications, code or systems it tests. All software

includes

defects:

 nothing in this document is intended to represent or warrant that security testing was complete

and

 without error, nor does this document represent or warrant that the application

tested is

suitable

to

task, free of other defects than reported, fully DISCLAIMER - Compliant with any industry standards,

or

fully compatible with any operating system, hardware, or other application. By

using

this information

 you agree that Blueswarm shall be held harmless in any event

